Abstract
We consider the preconditioned Krylov subspace method for linear systems arising from the finite volume discretization method of steady-state variable-coefficient conservative space-fractional diffusion equations. We propose to use a scaled-circulant preconditioner to deal with such Toeplitz-like discretization matrices. We show that the difference between the scaled-circulant preconditioner and the coefficient matrix is equal to the sum of a small-norm matrix and a low-rank matrix. Numerical tests are conducted to show the effectiveness of the proposed method for one- and two-dimensional steady-state space-fractional diffusion equations and demonstrate that the preconditioned Krylov subspace method converges very quickly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.