Abstract

In the last years, LoRa has emerged as a high potential candidate among several standards for the Internet of Things (IoT) subject to an exponential development. LoRa modulation is based on a classical chirp spread-spectrum technique and permits wireless data transmission up to 50 kbps over several kilometers with a high energy efficiency. Although a well-known principle, its performance in terms of symbol or bit error probability has been theoretically analyzed in few recent papers only. Recently, closed-form approximations of Bit Error Probability (BEP) for additive white Gaussian noise channels and Rayleigh fading channels were proposed. In this paper, we introduce a new approach using Marcum function for approximating the LoRa BEP. The latter is available for both Additive White Gaussian Noise channels and Rayleigh fading channels and the approach should deal with a variety of fadings. Simulations and comparisons with the state of the art show that the proposed approximation is almost ten times more accurate and may be considered as a numerical reference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.