Abstract

Whole-cell voltage clamp was carried out on freshly dispersed single smooth muscle cells from adult rat and human colons to investigate the regulation of the Ca2+ channels. In this study, we unexpectedly discovered the existence of a fast Na+ channel current. With normal physiological salt solution (PSS) plus 4-amino-pyridine (3 mM) in the bath and high-Cs+ solution in the pipette to inhibit outward K+ currents, an inward current possessing fast and slow components was observed when the cell membrane was depolarized to a value more positive than -20 mV from a holding potential of -100 mV. When Ca2+ ions were removed from the PSS, or when nifedipine (10 microM) and Ni2+ (30 microM) were simultaneously applied, the slow component disappeared and the fast component remained. The fast current component became almost completely inactivated within 10 ms. This fast component was dependent on extracellular Na+ concentration and was inhibited by tetrodotoxin (TTX) dose dependently (IC50 of 130 nM in rat and 14 nM in human). These results suggest that the slow component of inward current was a Ca2+ channel current, whereas the fast component was a TTX-sensitive fast Na+ channel current. The threshold voltage, the voltage for peak current, and the reversal potential for the fast Na+ current were, respectively, about -50, -20, and +50 mV in rats, and -40, 0, and +60 mV in humans. The incidence of cells possessing fast Na+ currents depended on the region of the colon.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.