Abstract

Owing to its ability to handle negative data and promising clustering performance, concept factorization (CF), an improved version of non-negative matrix factorization, has been incorporated into multi-view clustering recently. Nevertheless, existing CF-based multi-view clustering methods still have the following issues: (1) they directly conduct factorization in the original data space, which means its efficiency is sensitive to the feature dimension; (2) they ignore the high degree of factorization freedom of standard CF, which may lead to non-uniqueness factorization thereby causing reduced effectiveness; (3) traditional robust norms they used are unable to handle complex noises, significantly challenging their robustness. To address these issues, we establish a fast multi-view clustering via correntropy-based orthogonal concept factorization (FMVCCF). Specifically, FMVCCF executes factorization on a learned consensus anchor graph rather than directly decomposing the original data, lessening the dimensionality sensitivity. Then, a lightweight graph regularization term is incorporated to refine the factorization process with a low computational burden. Moreover, an improved multi-view correntropy-based orthogonal CF model is developed, which can enhance the effectiveness and robustness under the orthogonal constraint and correntropy criterion, respectively. Extensive experiments demonstrate that FMVCCF can achieve promising effectiveness and robustness on various real-world datasets with high efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.