Abstract

Energy storage systems with Lithium-ion batteries require balancing due to individual cells having manufacturing inconsistencies, different self-discharge rates, internal resistances, and temperature variations. Nondissipative redistributive balancing further improves on the pack capacity and efficiency over a dissipative approach where energy is consumed across shunt resistors. This paper presents a high-level fast model predictive control (MPC) in continuous time. The optimization problem uses performance metrics to balance the state of charge (SoC) in the battery pack. It is shown in simulation that MPC achieves a single point convergence of the SoC when compared against a common rule-based algorithm. This improves the efficiency of the power electronics and prolongs the life of each battery cell since frequent switching between charging and discharging of intermediate cells is avoided. Experimental results are presented to show a redistributive battery balancing system that achieves a balanced state in the minimum amount of time by coupling the fast MPC with microcontrollers available on todays market.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.