Abstract

To reduce the radiation dose in dental computed tomography (CT), backprojection-filtration (BPF) algorithm is the preferred choice as it can reconstruct images from truncated data within limited scanning angle, thereby reducing radiation dose and avoiding irradiation to the brain. However, the integral interval of backprojection is variable for every PI-line which causes the calculation efficiency and parallel performance to be low. In this paper, the tent BPF method (T-BPF) was developed, which was performed by firstly rearranging the cone-beam data to tent-like parallel-beam data, and then applying the proposed BPF-type algorithm to reconstruct images from the rearranged data. T-BPF turns the variable integral interval of backprojection into fixed integral interval, which means the reconstruction efficiency and the parallel performance of T-BPF are improvements over those of the original BPF algorithm. The experiments of numerical simulation and real data reconstruction show that the reconstruction efficiency of T-BPF is faster than the original BPF algorithm and the FDK algorithm in the case of comparable reconstruction quality. The results demonstrate that the proposed T-BPF is good at achieving fast low-dose reconstruction from truncated projection data in dental CT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.