Abstract

SummaryWe propose a computationally efficient and statistically principled method for kernel smoothing of point pattern data on a linear network. The point locations, and the network itself, are convolved with a two‐dimensional kernel and then combined into an intensity function on the network. This can be computed rapidly using the fast Fourier transform, even on large networks and for large bandwidths, and is robust against errors in network geometry. The estimator is consistent, and its statistical efficiency is only slightly suboptimal. We discuss bias, variance, asymptotics, bandwidth selection, variance estimation, relative risk estimation and adaptive smoothing. The methods are used to analyse spatially varying frequency of traffic accidents in Western Australia and the relative risk of different types of traffic accidents in Medellín, Colombia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.