Abstract

This paper proposes a leader–follower formation control protocol using fast finite-time (FFT) theory, based on second-order nonlinear multi-agent systems (MASs) with input saturation constraints. The artificial potential field method is addressed to implement the formation control with obstacle avoidance of the MASs. An adaptive FFT strategy is constructed that all the agents follow required formation performance. Neural networks are considered to approximate uncertain functions, which improved convergence and ensuring safety of distributed formation control. Finally, the validity of the theoretical approach is demonstrated by FFT stability theory validated by simulation examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.