Abstract

When building a road, it is critical to select a vertical alignment which ensures design and safety constraints. Finding such a vertical alignment is not necessarily a feasible problem, and the models describing it generally involve a large number of variables and constraints. This paper is dedicated to rapidly proving the feasibility or the infeasibility of a Mixed Integer Linear Program (MILP) modeling the vertical alignment problem. To do so, we take advantage of the particular structure of the MILP, and we prove that only a few of the MILP’s constraints determine the feasibility of the problem. In addition, we propose a method to build a feasible solution to the MILP that does not involve integer variables. This enables time saving to proving the feasibility of the vertical alignment problem and to find a feasible vertical alignment, as emphasized by numerical results. It is on average 75 times faster to prove the feasibility and 10 times faster to build a feasible solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.