Abstract

In this article, we propose a new fast algorithm to compute the squared Euclidean distance transform (E 2DT) on every two-dimensional (2-D) irregular isothetic grids (regular square grids, quadtree based grids, etc.). Our new fast algorithm is an extension of the E 2DT method proposed by Breu et al. [3]. It is based on the implicit order of the cells in the grid, and builds a partial Voronoi diagram of the centers of background cells thanks to a data structure of lists. We compare the execution time of our method with the ones of others approaches we developed in previous works. In those experiments, we consider various kinds of classical 2-D grids in imagery to show the interest of our methodology, and to point out its robustness. We also show that our method may be interesting regarding an application where we extract an adaptive medial axis construction based on a quadtree decomposition scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.