Abstract

A sparse dictionary is more adaptive than a sparse fixed-basis transform since it can learn the features directly from the input data in a data-driven way. However, learning a sparse dictionary is time-consuming because a large number of iterations are required in order to obtain the dictionary atoms that best represent the features of input data. The computational cost becomes unaffordable when it comes to high-dimensional problems, e.g., 3-D or even 5-D applications. We propose an efficient high-dimensional dictionary learning (DL) method by avoiding the singular value decomposition (SVD) calculation in each dictionary update step that is required by the classic <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula> -singular value decomposition (KSVD) algorithm. Besides, due to the special structure of the sparse coefficient matrix, it requires a much less expensive sparse coding process. The overall computational efficiency of the new DL method is much higher, while the results are still comparable or event better than those from the traditional KSVD method. We apply the proposed method to both 3-D and 5-D seismic data reconstructions and demonstrate successful and efficient performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.