Abstract

Three-Dimensional High-Efficiency Video Coding (3D-HEVC) has been extensively researched due to its efficient compression and deep image representation, but encoding complexity continues to pose a difficulty. This is mainly attributed to redundancy in the coding unit (CU) recursive partitioning process and rate–distortion (RD) cost calculation, resulting in a complex encoding process. Therefore, enhancing encoding efficiency and reducing redundant computations are key objectives for optimizing 3D-HEVC. This paper introduces a fast-encoding method for 3D-HEVC, comprising an adaptive CU partitioning algorithm and a rapid rate–distortion-optimization (RDO) algorithm. Based on the ALV features extracted from each coding unit, a Gradient Boosting Machine (GBM) model is constructed to obtain the corresponding CU thresholds. These thresholds are compared with the ALV to further decide whether to continue dividing the coding unit. The RDO algorithm is used to optimize the RD cost calculation process, selecting the optimal prediction mode as much as possible. The simulation results show that this method saves 52.49% of complexity while ensuring good video quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.