Abstract

Electromagnetic wave radiation from a SLF/ELF horizontal electric dipole (HED) related to seismic activity is discussed. In order to estimate the effects on the electromagnetic waves associated with the seismic activity, SLF/ELF waves on the ground radiated from a possible seismic current source modeled as a electric dipole, are precisely computed by using a speeding numerical convergence algorithm. A theoretical calculation of the VLF/SLF electric wave propagating among the Earth-ionosphere cavity generally utilizes the full wave method to solve the model equation. The field in the cavity is comprehended as the sum of each wave mode. However, this method is very complex, and unsuitable to the ELF frequency band. In 1999, Barrick proposed an algorithm, which was only suitable to solve the electromagnetic problems under the ideal electric conductor condition. To solve the problems under the non-ideal electric conductor condition, we have further developed Barrick's method and proposed a speeding numerical convergence algorithm. The spherical harmonic series expressions of electromagnetic fields excited by SLF/ELF HED in non-ideal Earth-ionosphere cavity are derived. The speed of this algorithm is faster thirty times than it of calculating directly the sum of the series. If it calculates directly the sum of the series, it needs 1,000 series items, while it needs only 200 series items by this algorithm. Our algorithm is compared with the second order spherical surface approximate algorithm, and two algorithms agree with each other very well. Therefore, our algorithm is correct. Schumann resonance is also verified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.