Abstract

Computation of image spatial entropy (ISE) is prohibitive in many applications of image processing due to its high computational complexity. Four fast or computationally efficient methods for estimation of ISE are thus introduced in this paper. Three of these estimation methods are parametric and the fourth one is non-parametric. The reduction in the computational complexity from the original formulation of ISE is made possible by making use of the Markovianity constraint which causes the joint histograms of neighboring pixels to become dense around their main diagonal. It is shown that by tolerating merely 1% estimation error, the order of complexity is significantly reduced and for applications that can tolerate 6% estimation error, the complexity is reduced to that of the classical monkey model entropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.