Abstract
When charging a lithium-ion cell, the deposition of metallic lithium on the negative electrode surface, known as lithium plating, must be avoided. In this paper, the charging process of a commercial high energy lithium-ion pouch cell is investigated. Three-electrode test cells are assembled using electrode materials from the high energy lithium-ion pouch cell together with lithium metal as reference electrode to acquire the potential at the negative electrode-electrolyte interface. During charging, the cells’ current is controlled in a way that the negative electrode potential is maintained constantly slightly above 0 V vs. Li/Li+.The resulting current map depending on temperature and state of charge is used to control the charging process of the pouch cell. Following this new charging procedure, a state of charge of 80% is reached in 15 min at 25°C ambient temperature. Different cycle life tests are performed to examine iteratively an approach to how the charging current has to be reduced over the lifetime in order to avoid accelerated aging. To prove the practicability, the method is tested at the battery pack level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.