Abstract

Stochastic gradient descent (SGD) and its variants have become more and more popular in machine learning due to their efficiency and effectiveness. To handle large-scale problems, researchers have recently proposed several parallel SGD methods for multicore systems. However, existing parallel SGD methods cannot achieve satisfactory performance in real applications. In this paper, we propose a fast asynchronous parallel SGD method, called AsySVRG, by designing an asynchronous strategy to parallelize the recently proposed SGD variant called stochastic variance reduced gradient (SVRG). AsySVRG adopts a lock-free strategy which is more efficient than other strategies with locks. Furthermore, we theoretically prove that AsySVRG is convergent with a linear convergence rate. Both theoretical and empirical results show that AsySVRG can outperform existing state-of-the-art parallel SGD methods like Hogwild! in terms of convergence rate and computation cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.