Abstract

Text in images and video frames carries important information for visual content understanding and retrieval. In this paper, by using multiscale wavelet features, we propose a novel coarse-to-fine algorithm that is able to locate text lines even under complex background. First, in the coarse detection, after the wavelet energy feature is calculated to locate all possible text pixels, a density-based region growing method is developed to connect these pixels into regions which are further separated into candidate text lines by structural information. Secondly, in the fine detection, with four kinds of texture features extracted to represent the texture pattern of a text line, a forward search algorithm is applied to select the most effective features. Finally, an SVM classifier is used to identify true text from the candidates based on the selected features. Experimental results show that this approach can fast and robustly detect text lines under various conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.