Abstract

A spectrally sparse signal of order $r$ is a mixture of $r$ damped or undamped complex sinusoids. This paper investigates the problem of reconstructing spectrally sparse signals from a random subset of $n$ regular time domain samples, which can be reformulated as a low rank Hankel matrix completion problem. We introduce an iterative hard thresholding (IHT) algorithm and a fast iterative hard thresholding (FIHT) algorithm for efficient reconstruction of spectrally sparse signals via low rank Hankel matrix completion. Theoretical recovery guarantees have been established for FIHT, showing that $O(r^2\log^2(n))$ number of samples are sufficient for exact recovery with high probability. Empirical performance comparisons establish significant computational advantages for IHT and FIHT. In particular, numerical simulations on $3$D arrays demonstrate the capability of FIHT on handling large and high-dimensional real data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.