Abstract

Electrical conductive metal-organic frameworks (EC-MOFs) are emerging as an appealing class of highly tailorable electrically conducting materials with potential applications in optoelectronics. Here, we in situ grew nickel hexahydroxytriphenylene (Ni-CAT) on the surface of ZnO nanorods (NRs). The self-powered photodetectors (PDs) were fabricated with heterojunctions formed at the interface of ZnO NRs and Ni-CAT. With this, the built-in electric field (BEF) can effectively separate the photogenerated electron-hole pairs and enhance the photoresponse. We observe that the PDs based on hybrid ZnO/Ni-CAT with 3 h of growth time (ZnO/Ni-CAT-3) show good photoresponse (137 μA/W) with the fast rise (3 ms) and decay time (50 ms) under 450 nm light illumination without biased voltage. This work provides a facile and controllable method for the growth of the ZnO/Ni-CAT heterojunction with an effective BEF zone, which will benefit their optoelectronic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.