Abstract

An iterative-based hybrid method, which combines the volume-surface integral equation (VSIE) and the modified surface integration (MSI) method, is presented to analyze the radome-enclosed antennas in receiving mode. Compared with the previously published hybrid approaches, this method improves computational accuracy by including the effects of shaded wall of the radome and the mutual interactions between antennas and radome during the numerical solution of the VSIE in an iterative manner. By embedding different parts of the antenna-radome structure (ARS) into three distinct oct-trees, the multilevel fast multipole algorithm (MLFMA) is used to accelerate both the VSIE solution and the surface/volume integrations in the MSI stage. The new method obtains more accurate results than its original version within less CPU time, and keeps good accuracy with much less memory usage and computational time when compared with the MLFMA-accelerated full-wave VSIE solution for the entire ARS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.