Abstract

To fast and accurately reconstruct human lung gas MRI from highly undersampled k-space using deep learning. The scheme was comprised of coarse-to-fine nets (C-net and F-net). Zero-filling images from retrospectively undersampled k-space at an acceleration factor of 4 were used as input for C-net, and then output intermediate results which were fed into F-net. During training, a L2 loss function was adopted in C-net, while a function that united L2 loss with proton prior knowledge was used in F-net. The 871 hyperpolarized 129 Xe pulmonary ventilation images from 72 volunteers were randomly arranged as training (90%) and testing (10%) data. Ventilation defect percentage comparisons were implemented using a paired 2-tailed Student's t-test and correlation analysis. Furthermore, prospective acquisitions were demonstrated in 5 healthy subjects and 5 asymptomatic smokers. Each image with size of 96 × 84 could be reconstructed within 31 ms (mean absolute error was 4.35% and structural similarity was 0.7558). Compared with conventional compressed sensing MRI, the mean absolute error decreased by 17.92%, but the structural similarity increased by 6.33%. For ventilation defect percentage, there were no significant differences between the fully sampled and reconstructed images through the proposed algorithm (P = 0.932), but had significant correlations (r = 0.975; P < 0.001). The prospectively undersampled results validated a good agreement with fully sampled images, with no significant differences in ventilation defect percentage but significantly higher signal-to-noise ratio values. The proposed algorithm outperformed classical undersampling methods, paving the way for future use of deep learning in real-time and accurate reconstruction of gas MRI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.