Abstract
Semiparametric accelerated failure time (AFT) models directly relate the expected failure times to covariates and are a useful alternative to models that work on the hazard function or the survival function. For case-cohort data, much less development has been done with AFT models. In addition to the missing covariates outside of the sub-cohort in controls, challenges from AFT model inferences with full cohort are retained. The regression parameter estimator is hard to compute because the most widely used rank-based estimating equations are not smooth. Further, its variance depends on the unspecified error distribution, and most methods rely on computationally intensive bootstrap to estimate it. We propose fast rank-based inference procedures for AFT models, applying recent methodological advances to the context of case-cohort data. Parameters are estimated with an induced smoothing approach that smooths the estimating functions and facilitates the numerical solution. Variance estimators are obtained through efficient resampling methods for nonsmooth estimating functions that avoids full blown bootstrap. Simulation studies suggest that the recommended procedure provides fast and valid inferences among several competing procedures. Application to a tumor study demonstrates the utility of the proposed method in routine data analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.