Abstract
Real-time monitoring methods are essential to the understanding and control of chemical reactions. NMR spectroscopy is particularly well suited for this purpose. It can provide quantitative information and offers great versatility in the analytical setup, making it possible to monitor reactions in chemically relevant conditions and to access sub-second timescales. 2D NMR experiments can play a crucial role in cases of peak overlap in the spectra or when structural information is sought for species transiently formed during the reaction. However, in their conventional form, 2D experiments typically require several minutes or more to acquire a full data set. In this chapter, we show how fast 2D NMR methods make it possible to push the limits of what can be monitored with NMR spectroscopy. First, we describe the motivation to use fast 2D NMR methods for reaction monitoring. Several methods for fast 2D NMR experiments have been exploited for reaction monitoring, in particular non-uniform sampling (NUS) and ultrafast 2D NMR. We also describe and compare the key features of experimental setups for reaction monitoring, such as benchtop spectrometers, flow-NMR setups, and fast-mixing apparatus. We then discuss applications in chemical synthesis and catalysis, which illustrate the potential of fast 2D NMR methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.