Abstract

We apply the farsighted stable set to two versions of Hotelling’s location games: one with a linear market and another with a circular market. It is shown that there always exists a farsighted stable set in both games, which consists of location profiles that yield equal payoff to all players. This stable set contains location profiles that reflect minimum differentiation as well as those profiles that reflect local monopoly. These results are in contrast to those obtained in the literature that use some variant of Nash equilibrium. While this stable set is unique when the number of players is two, uniqueness no longer holds for both models when the number of players is at least three.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.