Abstract

Aerodynamics mechanisms on a solar panel were studied using Computational Fluid Dynamics methodology at different wind directions. The wind velocity was chosen as 10 m/s that corresponding turbulent flow. The inclination angle of the panel was fixed as 25°, while the wind directions were varied as 180°, 135°, 45°, and 0°. Governing equations were solved by utilizing a finite volume method with a realizable k-ε turbulence model and standard wall functions. The results showed that the recirculation area occurred for the straight wind directions, but it was not observed for the oblique wind directions. The highest pressure coefficients occurred at the leading edges of the solar panel and they reduced to the trailing edge for all wind directions. The maximum drag and uplift coefficient was obtained at the wind direction of 0° and 180°, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.