Abstract

We apply the original semiclassical approach to the kinetic ionization equation with the nonlocal cubic nonlinearity in order to construct the family of its asymptotic solutions. The approach proposed relies on an auxiliary dynamical system of moments of the desired solution to the kinetic equation and the associated linear partial differential equation. The family of asymptotic solutions to the kinetic equation is constructed using the symmetry operators acting on functions concentrated in a neighborhood of a point determined by the dynamical system. Based on these solutions, we introduce the nonlinear superposition principle for the nonlinear kinetic equation. Our formalism based on the Maslov germ method is applied to the Cauchy problem for the specific two-dimensional kinetic equation. The evolution of the ion distribution in the kinetically enhanced metal vapor active medium is obtained as the nonlinear superposition using the numerical–analytical calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.