Abstract

It is easily proved that, if P is a class of graphs that is closed under induced subgraphs, then the family of matroids whose basis graphs belong to P is closed under minors. We give simple necessary and sufficient conditions for a minor-closed class of matroids to be induced in this way, and characterise when such a class of matroids contains arbitrarily large connected matroids. We show that five easily-defined families of matroids can be induced by a class of graphs in this manner: binary matroids; regular matroids; the polygon matroids of planar graphs; those matroids for which every connected component is either graphic or cographic; and those matroids for which every connected component is either binary or can be obtained from a binary matroid by a single circuit-hyperplane relaxation. We give an excluded-minor characterisation of the penultimate class, and show that the last of these classes has infinitely many excluded minors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.