Abstract

The integration of advanced information and communication technology in smart grids has exposed them to increased cyber attacks. Traditional model-based fault detection systems rely on mathematical models to identify malicious activities but struggle with the complexity of modern systems. This paper explores the application of artificial intelligence, specifically machine learning, to develop fault detection mechanisms that do not depend on these models. We focus on operational technology for fault detection, isolation, and identification (FDII) within smart grids, specifically examining a load frequency control (LFC) system. Our proposed approach uses sensor data to accurately identify threats, demonstrating promising results in simulated environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.