Abstract

Aim To calculate fallow time (FT) required following dental aerosol generating procedures (AGPs) in both a dental hospital (mechanically ventilated) and primary care (non-mechanically ventilated). Secondary outcomes were to identify spread and persistence of aerosol in open clinics compared to closed surgeries (mechanically ventilated environment), and identify if extraoral scavenging (EOS) reduces FT and production of aerosol.Methods In vitro simulation of fast handpiece cavity preparations using a manikin was conducted in a mechanically and non-mechanically ventilated environment using Optical Particle Sizer and NanoScan at baseline, during the procedure and fallow period.Results AGPs carried out in the non-mechanically, non-ventilated environment failed to achieve baseline particle levels after one hour. In contrast, when windows were opened after AGPs, there was an immediate reduction in all particle sizes. In mechanically ventilated environments, the baseline levels of particles were very low and particle count returned to baseline within ten minutes following the AGP. There was no detectable difference between particles in mechanically ventilated open bays and closed surgeries. The effect of the EOS on reducing the particle count was greater in the non-mechanically ventilated environment; additionally, it also reduced the spikes in particle counts in mechanically ventilated environments.Conclusion High-efficiency particulate, air-filtered mechanical ventilation, along with mitigation (high-volume suction), resulted in reduction of fallow time (ten minutes). Non-ventilated rooms failed to reach baseline level even after one hour of fallow time. There was no difference in particle counts in open bays or closed surgeries in mechanically ventilated settings with an extraoral suction device reducing particulate spikes. This study confirms that AGPs are not recommended in dental surgeries where no ventilation is possible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.