Abstract

Two figures of this paper. One of the key goals of the FAIR guiding principles is defined by its final principle – to optimize data sets for reuse by both humans and machines. To do so, data providers need to implement and support consistent machine readable metadata to describe their data sets. This can seem like a daunting task for data providers, whether it is determining what level of detail should be provided in the provenance metadata or figuring out what common shared vocabularies should be used. Additionally, for existing data sets it is often unclear what steps should be taken to enable maximal, appropriate reuse. Data citation already plays an important role in making data findable and accessible, providing persistent and unique identifiers plus metadata on over 16 million data sets. In this paper, we discuss how data citation and its underlying infrastructures, in particular associated metadata, provide an important pathway for enabling FAIR data reuse. Figure 1 shows an example data citation. Figure 2 shows an example DataCite metadata.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.