Abstract
The article deals with the issues of the strengthening and stabilisation of stone masonry columns reinforced by fabrics based on inorganic fibres under concentric compression. These structures represent a frequent design solution of load-bearing structures of historic buildings. High-strength carbon fibres fabric placed along the perimeter of a masonry column—in thirds of the column height—prevents the undesirable redistribution of compressive normal stresses along the compressed element’s cross section in the phase of crack propagation and crack development. In this phase, despite growing horizontal and vertical deformations (mainly in the central part), a masonry element is able to transfer the growing compressive load. In this case, a gradual exhaustion of the ultimate strength of the individual masonry components occurs as a consequence of wrapping in a composite based on high-strength fibres. The experimental research of the failure mechanism of stone columns made of coursed masonry of regular sandstone blocks and coursed masonry of irregular (freestone) blocks under concentric compression and the research of the performance of non-reinforced as well as CFRP-reinforced stone columns completed to-date reveals the necessity of a different approach to the assessment of the load-bearing capacity, or residual load-bearing capacity, of masonry composed of stone blocks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.