Abstract

The counterweight of a propeller in a turboprop aircraft was separated during an engine run-up inspection. If this separation occurs in-flight, it may result in an accident involving serious damage or injury. In this investigation, the failed counterweight clamping assembly was studied to determine the root cause of failure. Both experimental and computational investigations were performed to explore and confirm the effects of experimentally observed anomalies on potential clamping assembly failure. Dimensional measurement of the failed clamping thread area by X-ray CT scanning revealed significant deviation from requirements in the major diameter of the thread. Fractographic and microscopic examination along with chemical analysis confirmed that the clamping bolts were pulled out due to overload stripping failure of the internal threads. Detailed computational fracture modeling utilizing the XFEM crack simulation technique provided further insight proving that thread engagement length had a significant effect on the clamping assembly failure. Based on these observations, it was concluded that the main root cause of the stripping failure was the dimensional nonconformance of the internal thread from the requirements in standard 7/16-20UNF-3B that resulted in the loss of thread engagement length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.