Abstract

We present experimental measurements of a granular slope under horizontal vibration. We use optical particle tracking to measure the motion of surface beads as the slope fails. We find that for all but the largest inclination angles, initial bead motion leads to strengthening rather than an avalanche. The initial motion of the beads is usually intermittent and evolves differently for different preparations, slope angles, and rates of increase in the vibration amplitude. When a specific criterion is chosen to define failure, the Coulomb friction model adequately describes the average acceleration required to produce failure, as long as slope preparation and experimental protocol are constant. However, the observed intermittent motion and rate dependence indicate that strengthening microrearrangements are important features that affect failure of slopes under external perturbations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.