Abstract

It is well known that one way shape memory effect (SME) in Fe-Mn-Si-based shape memory alloys (SMAs) is related to the thermally induced reversion of e (hexagonal close packed, hcp) stress-induced martensite (SIM) to γ (face centered cubic, fcc) austenite. In the case of a Fe-Mn-Si-Cr-Ni SMA, this reverse martensitic transformation was analyzed in regard to the critical temperature for the beginning of austenite formation (As) in different states characterized by quenching temperature and permanent tensile strain. For this purpose, dynamic mechanical analysis (DMA), dilatometry (DIL), differential thermal analysis (DSC), and optical microscopy (OM) were employed to determine the influence of quenching temperature and permanent tensile straining on SIM reversion to austenite during heating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.