Abstract

Oligodeoxynucleotides of various chain lengths (p(Bp)nB, n ≤ 9) and the eight possible dinucleotide phosphates (pm6GpB and pBpm6G), each containing a single O6-methylguanine residue (m6G), were used to study the repair kinetics of this lesion by the cloned DNA repair proteins; human 21 kDa O6-methylguanine-DNA methyltransferase (MGMT), human 43 kDa glutathione-S-transferase fused MGMT (GSTMGMT) and the Escherichia coli 39 kDa ada protein. The observed second-order repair rate constants are dependent upon both the chain length of the oligonucleotide substrates for all the three proteins and in the case of human MGMT, the stacking energies of the dinucleotides, BpB (B = A, G, C, or T and assuming O6-methylguanine is similar to B). The differences observed in the ratios of the rate constants for the substrates with five and four base residues; 125 for the E. coli 39 kDa ada protein, 640 for the human MGMT and 27,800 for the human fusion protein GSTMGMT, suggest that the pentanucleotide phosphate containing this lesion is the "optimal" substrate for the proteins. Surprisingly, the human GSTMGMT is shown to be more effective in the repair of longer substrates with the second-order repair rate constants for TATA-Cm6GTATA being 6·16 × 106 for GSTMGMT, 2·00 × 106 for MGMT and 0·27 × 106 M-1 s-1 for the E. coli 39 kDa ada protein. Thus, the presence of an additional protein domain at the N terminus of human MGMT can alter its selectivity towards certain substrates. Although a number of peptide domains are conserved between the E. coli 39 kDa ada protein and human MGMT, they are enzymatically different. The data from the repair of dinucleotide phosphates can also be used to explain the observed sequence specific repair of this lesion within certain DNA sequences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.