Abstract
Linear factorization relations are derived for the matrix elements of quantum mechanical operators defined on some space ℋ = ℋ1⊕⋅2 which are diagonalizable on ℋ1. The coefficients in these relationships do not depend on the operators per se but do depend on the representations in which the operators are diagonal. The formulation is very general with regard to the nature of the ’’input’’ information in the factorization. With each choice of input information there are associated consistency conditions. The consistency conditions, in turn, give rise to a flexibility in the form of the factorization relations. These relations are examined in detail for the operators of scattering theory which are local in the internal molecular coordinates. In particular, this includes S and T matrices in the energy sudden (ES) approximation. A similar development is given for the square of the magnitude of operator matrix elements appropriately averaged over ’’symmetry classes.’’ In the ES these relations apply to transition cross sections between symmetry classes. In particular, they apply to degeneracy averaged cross sections in situations where the symmetry classes correspond to energy levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.