Abstract

Fibrin stabilizing factor (factor XIII or FXIII) plays a critical role in the generation of a viable hemostatic plug. Following exposure to thrombin and calcium, the zymogen is activated to FXIIIa that, in turn, catalyzes the formation of N epsilon(gamma-glutamyl)lysine protein-to-protein side chain bridges within the clot network. Introduction of these covalent crosslinks greatly augments the viscoelastic storage modulus of the structure and its resistance to fibrinolytic enzymes. Analysis of the individual reaction steps and regulatory control mechanisms involved in clot stabilization enabled us to reconstruct the entire physiological process. This also serves as a guide for the differential diagnosis of the variety of molecular defects of fibrin stabilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.