Abstract

Crry is a potent complement regulator that inhibits classical and alternative pathway C3 convertases in rodents. We have produced transgenic animals expressing Crry as a recombinant soluble protein driven by the broadly active metallothionein-I promoter. These animals have high serum and urinary levels of rsCrry leading to inhibition of complement activity. In nephrotoxic serum nephritis (NSN), injected antibodies bind to glomeruli, leading to complement activation and subsequent glomerular injury and albuminuria. We have shown that rsCrry can block such injury and reduce albuminuria by as much as 75%. Corresponding to the reduction in albuminuria was the complete absence of C3 staining in glomeruli by immunofluorescence microscopy in 17/20 transgene positive animals. Support for a local source of protective rsCrry in this model is provided by the demonstration of Crry transgene mRNA in the glomerulus and a very high fractional excretion of rsCrry in the urine. Therefore, rsCrry expression markedly ameliorates an antibody-induced disease model in vivo. In addition, local synthesis of Crry in other organs that are targets of immune injury has been found. For example, Crry transgene mRNA is present throughout the central nervous system and in pancreatic islets. Thus, continuous complement inhibition at the C3 convertase step appears to be feasible and is effective in complement-mediated injury states. A number of disease models affecting these target organs can be tested using these mice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.