Abstract
In this paper, we propose a fractional preference model for the facility location game with two facilities that serve the similar purpose on a line where each agent has his location information as well as fractional preference to indicate how well they prefer the facilities. The preference for each facility is in the range of [0, L] such that the sum of the preference for all facilities is equal to 1. The utility is measured by subtracting the sum of the cost of both facilities from the total length L where the cost of facilities is defined as the multiplication of the fractional preference and the distance between the agent and the facilities. We first show that the lower bound for the objective of minimizing total cost is at least Ω(n^1/3). Hence, we use the utility function to analyze the agents' satification. Our objective is to place two facilities on [0, L] to maximize the social utility or the minimum utility. For each objective function, we propose deterministic strategy-proof mechanisms. For the objective of maximizing the social utility, we present an optimal deterministic strategy-proof mechanism in the case where agents can only misreport their locations. In the case where agents can only misreport their preferences, we present a 2-approximation deterministic strategy-proof mechanism. Finally, we present a 4-approximation deterministic strategy-proof mechanism and a randomized strategy-proof mechanism with an approximation ratio of 2 where agents can misreport both the preference and location information. Moreover, we also give a lower-bound of 1.06. For the objective of maximizing the minimum utility, we give a lower-bound of 1.5 and present a 2-approximation deterministic strategy-proof mechanism where agents can misreport both the preference and location.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.