Abstract

The realization of sodium-ion devices with high-power density and long-cycle capability is challenging due to the difficulties of carrier diffusion and electrode fragmentation in transition metal selenide anodes. Herein, a Mo/W-based metal-organic framework is constructed by a one-step method through rational selection, after which MoWSe/C heterostructures with large angles are synthesized by a facile selenization/carbonization strategy. Through physical characterization and theoretical calculations, the synthesized MoWSe/C electrode delivers obvious structural advantages and excellent electrochemical performance in an ethylene glycol dimethyl ether electrolyte. Furthermore, the electrochemical vehicle mechanism of ions in the electrolyte is systematically revealed through comparative analyses. Resultantly, ether-based electrolytes advantageously construct stable solid electrolyte interfaces and avoid electrolyte decomposition. Based on the above benefits, the Na half-cell assembled with MoWSe/C electrodes demonstrated excellent rate capability and a high specific capacity of 347.3 mA h g-1 even after cycling 2000 cycles at 10 A g-1. Meanwhile, the constructed sodium-ion capacitor maintains ∼80% capacity retention after 11,000 ultralong cycles at a high-power density of 3800 W kg-1. The findings can broaden the mechanistic understanding of conversion anodes in different electrolytes and provide a reference for the structural design of anodes with high capacity, fast kinetics, and long-cycle stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.