Abstract

Objective: A facile synthesis of some novel Schiff base derivatives of 2-substituted-5-amino-thiadiazoles along with their Ni (II), Cu (II), and Pd (II) complexes were achieved by sonication and the conventional method. In addition to establish the structure by DFT studies and to explore antimicrobial and anticancer activities of these novel compounds.Methods: The precursor 2-substituted-5-amino-thiadiazoles (T1-T3), target ligands and their metal complexes were synthesized by ultra-sonication and conventional means. The isolated products were thoroughly characterized by physical and spectroscopic techniques including 1H-NMR, [13]C-NMR and IR spectroscopy. All characterized compounds were screened for antimicrobial activities using well diffusion method, and MTT assay was performed for cytotoxicity.Results: All novel compounds were synthesized by a green route i.e. ultra sonication and a noticeable improvement in yield with shorter reaction time than the conventional method were observed. The octahedral geometry was proposed for Ni (II)/Cu (II) complexes whereas square planar for Pd (II) complexes on the basis of the spectral techniques which were supported by DFT analysis by Gaussian03. On the analysis of antimicrobial activities, the compound T7 and T10 showed maximum antibacterial and antifungal activities respectively. However, compounds T25, T37, T31 found to be a potential cytotoxic compound with IC50 value 0.469, 0.865 and 1.131 μM respectively.Conclusion: Analysis of synthetic protocol, it could be concluded that ultra-sonication is the better method to synthesize these potential biological active moiety. On the whole Cu (II) and Ni (II) complexes showed promising activity towards all microorganisms while Pd (II) complex emerged an excellent moiety in carcinoma cell line.

Highlights

  • The nitrogen, sulphur bearing heterocyclic systems constitutes the core structure of a number of biologically interesting compounds in living organisms, natural products, drugs and many more substances useful to mankind

  • As compared with traditional methods, this technique is more convenient, controllable and high producibility. Considering these facts and our interest to develop a new synthetic route, synthesis of substituted thiadiazoles (T1-T4) and their Schiff bases (T5-T16) with various ketones (5-bromoisatin, chalcone, acridone) by ultrasonication/conventional method were accomplished as depicted in Scheme 2 and 3 respectively

  • On the basis of spectral and Density functional theory (DFT) analysis, octahedral geometry was ascertained for metal complexes

Read more

Summary

Introduction

The nitrogen, sulphur bearing heterocyclic systems constitutes the core structure of a number of biologically interesting compounds in living organisms, natural products, drugs and many more substances useful to mankind Their synthesis and evaluation have always drawn the attention of chemists and biologists over the years. Increase in high throughputs biological screening and accelerated development of new biological targets has increased the demand on synthetic chemists to produce a new compound for testing in less time in sync with environment-friendly technique In this context, the use of ultrasonic irradiation [8,9,10,11,12] to activate organic reactions in the heterogeneous/homogeneous system has recently taken on a new dimension. The prominent features of ultrasound approach are to enhance reaction rates, the formation of purer products in high yields, shorter reaction time and milder conditions as compared with traditional methods

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.