Abstract

A novel Bi13S18I2 structure was synthesized using a facile one-pot hydrothermal method and further optimized as an anode material using graphene. The graphene/Bi13S18I2 composite achieved a high discharge capacity with an initial value of 1126.5 mA h g-1 and a high and stable discharge capacity of 287.1 mA h g-1 after 500 cycles compared with pure Bi13S18I2, which derives from the inhibited volume expansion and high electrical conductivity obtained from graphene. In situ XRD was performed to analyze the Li storage mechanism in depth. The results support the feasibility of the new ternary sulfide Bi13S18I2 as a promising lithium ion battery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.