Abstract

Water pollution and antimicrobial resistance (AMR) have become two global threats; 80% of diseases and 50% of child deaths are due to poor water quality. In this study, hydrothermal processing was employed to manufacture manganese oxide nanorods. Silver dopant was deposited on the surface of manganese oxide. XRD diffractogram confirmed the facile synthesis of Ag/Mn2O3 nanocomposite. XPS survey analysis demonstrated silver content of 9.43 atom %. Photocatalytic measurements demonstrated the outstanding efficiency of the Ag-Mn2O3 compared to virgin oxide particles under visible radiation. Degradation efficiencies Mn2O3 and Ag/Mn2O3 on methyl orange (MO) dye was found to be 53% and 85% under visible spectrum. Silver dopant was found to decrease the binding energy of valence electrons; this action could support electron–hole pair generation under visible spectrum and could promote catalytic performance. Ag/Mn2O3 NPs demonstrated most effective performance (95% removal efficiency) at pH 3; this could be ascribed to the electrostatic attraction between positively charged catalyst and the negatively charged MO. Ag/Mn2O3 demonstrated enhanced antibacterial activity against Gram-positive Staphylococcus aureus (S. aureus) (19 mm ZOI), and Gram-negative Escherichiacoli (E. coli) (22 mm ZOI) respectively; the developed nanocomposite demonstrated advanced anti-film activity with inhibition percentage of 95.5% against E. coli followed by 89.5% against S. aureus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.