Abstract
Direct methanol fuel cell (DMFC) has shown excellent growth as an alternative candidate for energy sources to substitute fossil fuels. However, developing cost-effective and highly durable catalysts with a facile synthesis method is still challenging. In this prospect, a facile strategy is used for the preparation of hydrophilic Fe-Pt nanoparticle catalyst via a polyethylene glycol-glycerol route to utilize the advantages of nanostructured surfaces. The synthesized electrocatalysts are characterized by XRD, XPS, TEM, EDS and FTIR to confirm their structure, morphology, composition, and surface functionalization. The performance of the catalysts towards methanol oxidation reaction (MOR) was investigated by cyclic voltammetry and chronoamperometry in both acidic and alkaline media. The Fe-Pt bimetallic catalyst exhibits better current density of 36.36 mA cm−2 in acidic medium than in alkali medium (12.52 mA cm−2). However, the high If/Ib ratio of 1.9 in alkali medium signifies better surface cleaning/regenerating capability of catalyst. Moreover, the catalyst possessed superior cyclic stability of ~ 80% in the alkaline electrolyte which is 1.6 times higher than in the acidic one. The better stability and poison tolerance capacity of catalyst in alkaline media is attributed to the OH− ions provided by the electrolyte which interact with the metal species to form M-(OH)x and reversibly release OH− and regenerate metal surface for further oxidation reactions. But synergism provided by Fe and Pt gives better activity in acidic electrolyte as Pt is favourable catalyst for dehydrogenation of methanol in acidic medium. This study will be useful for designing anodic electrocatalysts for MOR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.