Abstract

While bimetallic 2D metallic nanomaterials are widely synthesized and used as electrocatalysts with enhanced performance, trimetallic 2D structures are less commonly reported. In this work, a facile wet chemical method for synthesizing Pd nanosheets and PdPtNi trimetallic alloy nanosheets is developed. Without the introduction of gaseous CO and pressurized equipment, Pd nanosheets with a thickness of ≈2.85nm and sizes in the range of 1-2µm can be obtained. The facile synthesis conditions allow for a comprehensive study of the nanosheet growth mechanism. It is found that 2D growth is closely related to the product of solvent decomposition and the additive ligand diethylenetriamine. Further, by depositing Pt and Ni onto the Pd nanosheets, trimetallic nanosheets with tunable compositions can be obtained and applied as oxygen reduction reaction electrocatalysts. Typically, the Pd9 Pt1 Ni1 nanosheets have the highest half-wave potential of 0.928V (vs reversible hydrogen electrode), which is 34mV higher than that of commercial Pt/C and 28mV higher than that of Pd/C, and also have high durability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.