Abstract

Self-assembled three-dimensional BiOI microspheres composed of nanoplatelets were synthesized at low temperature using ethanol–water mixed solvent as reaction media and NH3·H2O as pH adjustment. The as-prepared BiOI was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-vis diffuse reflectance spectroscopy, and nitrogen sorption. The possible formation mechanism for the architectures was discussed. It was found that mixed solvent and alkali play key roles in the formation of BiOI microspheres. The photocatalytic activity of the as-prepared sample was evaluated by degradation of phenol in aqueous solution under visible light irradiation. The BiOI microspheres show much higher photocatalytic activity than the random BiOI platelets. The total organic carbon measurement after the degradation process indicated that phenol was effectively mineralized over the BiOI microspheres. In addition, the BiOI microspheres are stable during the reaction and can be used repeatedly. The high catalytic performance of the BiOI microspheres comes from their narrow band gap, high surface area and high surface-to-volume ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.