Abstract
We report the synthesis of manganese-doped nickel cobalt oxide (Mn-doped NiCo2O4) nanoparticles (NPs) by an efficient hydrothermal and subsequent calcination route. The material exhibits a homogeneous distribution of the Mn dopant and a battery-type behavior when tested as a supercapacitor electrode material. Mn-doped NiCo2O4 NPs show an excellent specific capacity of 417 C g-1 at a scan rate of 10 mV s-1 and 204.3 C g-1 at a current density of 1 A g-1 in a standard three-electrode configuration, ca. 152-466% higher than that of pristine NiCo2O4 or MnCo2O4. In addition, Mn-doped NiCo2O4 NPs showed an excellent capacitance retention of 99% after 1000 charge-discharge cycles at a current density of 2 A g-1. The symmetric solid-state supercapacitor device assembled using this material delivered an energy density of 0.87 μW h cm-2 at a power density of 25 μW h cm-2 and 0.39 μW h cm-2 at a high power density of 500 μW h cm-2. The cost-effective synthesis and high electrochemical performance suggest that Mn-doped NiCo2O4 is a promising material for supercapacitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.