Abstract

We report a facile and simple approach for growing low-cost and mixed-phase cobalt sulfide counter-electrodes (CEs) for efficient dye sensitized solar cells (DSSCs). The whole process involves growth of cobalt sulfide powders using a solution containing cobalt acetate and sodium sulfide by a chemical precipitation method at room temperature, preparation of cobalt sulfide pastes with ethyl cellulose, formation of cobalt sulfide films by screen-printing method, and treatment of the formed cobalt sulfide layers at 400 °C. Mixed-phase cobalt sulfide was formed on the FTO substrate after annealing. The electronic and ionic processes in platinum and cobalt sulfide based DSSCs are examined, analyzed and compared. Highly efficient DSSCs with mixed-phase cobalt sulfide CEs have been fabricated. The DSSC featuring a mixed-phase cobalt sulfide electrode achieved an energy efficiency as high as 7.2 %. The proposed cobalt sulfide CE manufacturing method is cheap and scalable. It can make large-scale electro-catalytic film fabrication cost competitive for both energy harvesting and storage applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.