Abstract

Here, we report a facile one-step solid-state reaction assisted synthesis of β-NaFeO2 perovskite for simultaneous sensing of Dopamine (DA), Uric Acid (UA), Xanthine (Xn) and Hypoxanthine (Hxn) in human blood. The orthorhombic phase formation in β-NaFeO2 with the presence of octahedral sites is confirmed through x-ray diffraction (XRD) and Raman spectroscopy while high surface area pebble-like morphology is observed through scanning electron microscopy (SEM). The sensor exhibits distinct oxidation potentials for DA, UA, Xn and Hxn with a peak separation (ΔEp) between DA-UA, UA-Xn and Xn-Hxn as 134mV, 388mV and 360mV, respectively. The sensor exhibits an excellent selectivity, sensitivity and low limits of detection (LOD) of 2.12nM, 158nM, 129nM and 95nM for DA, UA, Xn and Hxn, respectively which are well below the lower limits of their presence in physiological ranges in human body fluids. The sensor shows an excellent selectivity and it was successfully employed in simultaneous sensing of DA, UA, Xn and Hxn in simulated blood serum samples with excellent recovery percentages. This is the first report on low-cost β-NaFeO2 modified GCE for simultaneous electrochemical sensing of biomolecules which can be applied for numerous bioanalytical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.