Abstract

H-Phosphinates represent a valuable class of organophosphorus building blocks and catalytic ligands. The existing synthetic approaches are generally associated with the use of strong acids, the need for meticulous treatment of intermediates, and the limitation of only P-aryl introductions. Following a comprehensive investigation into the unexpected SiO2-promoted hydrolysis observed during the chromatography workup of the crude R'P(OR)2 intermediates, we have developed an extremely simple and general synthetic route to H-phosphinates from commercially available Grignard reagents and P(OR)3. An alternative approach involved the use of ClP(OR)2 in place of P(OR)3, which proved to be a valuable strategy for the preparation of sterically hindered ArMgBr substrates bearing bulky ortho-substituted motifs. A library of 36 structurally diverse P-(cyclo)alkyl and P-(hetero)aryl H-phosphinates was thus obtained in moderate to high yields using this practical protocol. Furthermore, the CuCl2-mediated P(O)-H bond derivations were also examined, resulting in the formation of the corresponding EtOPhP(O)-X (X = O, N, S) compounds in nearly quantitative yields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.